Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation

نویسندگان

  • Anders R. Hellström
  • Brenda Watt
  • Shahrzad Shirazi Fard
  • Danièle Tenza
  • Paula Mannström
  • Kristina Narfström
  • Björn Ekesten
  • Shosuke Ito
  • Kazumasa Wakamatsu
  • Jimmy Larsson
  • Mats Ulfendahl
  • Klas Kullander
  • Graça Raposo
  • Susanne Kerje
  • Finn Hallböök
  • Michael S. Marks
  • Leif Andersson
چکیده

PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel⁻/⁻). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel⁻/⁻ melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL

Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also ...

متن کامل

BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells.

Amyloids are often associated with pathologic processes such as in Alzheimer's disease (AD), but can also underlie physiological processes such as pigmentation. Formation of pathological and functional amyloidogenic substrates can require precursor processing by proteases, as exemplified by the generation of Aβ peptide from amyloid precursor protein (APP) by beta-site APP cleaving enzyme (BACE)...

متن کامل

Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic

PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)--which bear mut...

متن کامل

Expression of OA1 limits the fusion of a subset of MVBs with lysosomes – a mechanism potentially involved in the initial biogenesis of melanosomes

Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation, and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as GPR143)...

متن کامل

The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition.

OA1 (GPR143; GPCR, G-protein-coupled receptor), the protein product of the ocular albinism type 1 gene, encodes a pigment-cell-specific GPCR that localizes intracellularly to melanosomes. OA1 mutations result in ocular albinism due to alterations in melanosome formation, suggesting that OA1 is a key player in the biogenesis of melanosomes. To address the function of OA1 in melanosome biogenesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011